NORMA ARGENTINA

IRAM 11625*

Tercera edición 2000-04-07

Esta impresión tiene incorporadas las Modificaciones Nº1 y Nº2:2002 y Modificación Nº3:2006

Aislamiento térmico de edificios

Verificación de sus condiciones higrotérmicas

Verificación del riesgo de condensación de vapor de agua superficial e intersticial en los paños centrales de muros exteriores, pisos y techos de edificios en general

Thermal isolation of building.
Verification of their hygrothermical conditions.
Verification of condensation risk of superficial and interstitial water vapor in the central cloths of external walls, floors and roofs of building in general

* Corresponde a la revisión de la edición de Diciembre de 1991.

Prefacio

El Instituto Argentino de Normalización (IRAM) es una asociación civil sin fines de lucro cuyas finalidades específicas, en su carácter de Organismo Argentino de Normalización, son establecer normas técnicas, sin limitaciones en los ámbitos que abarquen, además de propender al conocimiento y la aplicación de la normalización como base de la calidad, promoviendo las actividades de certificación de productos y de sistemas de la calidad en las empresas para brindar seguridad al consumidor.

IRAM es el representante de la Argentina en la International Organization for Standardization (ISO), en la Comisión Panamericana de Normas Técnicas (COPANT) y en el Comité MERCOSUR de Normalización (CMN).

Esta norma IRAM es el fruto del consenso técnico entre los diversos sectores involucrados, los que a través de sus representantes han intervenido en los Organismos de Estudio de Normas correspondientes.

Corresponde a la revisión de la edición de Diciembre de 1991.

Índice

	Página
1 OBJETO Y CAMPO DE APLICACIÓN	5
2 NORMAS PARA CONSULTA	5
3 DEFINICIONES	5
4 SIMBOLOGÍA	6
5 PROCEDIMIENTO DE CÁLCULO PARA LOS PAÑOS CENTRALES DE MUROS EXTERIORES, PISOS Y TECHOS	8
6 CONSIDERACIONES GENERALES	11
Anexo A (Informativo)	12
Anexo B (Informativo)	38
Anexo C (Informativo)	39

Aislamiento térmico de edificios

Verificación de sus condiciones higrotérmicas

Verificación del riesgo de condensación de vapor de agua superficial e intersticial en los paños centrales de muros exteriores, pisos y techos de edificios en general

1 OBJETO Y CAMPO DE APLICACIÓN

- **1.1** Establecer las condiciones y un procedimiento para la verificación del riesgo de condensación de vapor de agua superficial e intersticial en los paños centrales de muros exteriores, pisos y techos de edificios en general.
- **1.2** Esta norma es aplicable a los paños centrales de los elementos que conforman la envolvente de un edificio, tales como muros exteriores, techos y pisos de edificios en general. Los puntos singulares, como aristas, rincones y otros, se deben verificar según lo estipulado en la norma IRAM 11630.
- **1.3** Esta norma es de aplicación en todas las zonas bioambientales en que se ha dividido al país de acuerdo con la norma IRAM 11603.

2 NORMAS PARA CONSULTA

Los documentos normativos siguientes contienen disposiciones, las cuales, mediante su cita en el texto, se transforman en disposiciones válidas para la presente norma IRAM. Las ediciones indicadas eran las vigentes en el momento de su publicación. Todo documento es susceptible de ser revisado y las partes que realicen acuerdos basados en esta norma se deben esforzar para buscar la posibilidad de aplicar sus ediciones más recientes.

Los organismos internacionales de normalización y el IRAM mantienen registros actualizados de sus normas. IRAM 1735:1992 - Materiales de construcción. Método de ensayo para la determinación de la permeabilidad al vapor de agua.

IRAM 11549:1993 - Acondicionamiento térmico de edificios. Vocabulario.

IRAM 11601:1996 - Acondicionamiento térmico de edificios. Métodos de cálculo. Propiedades térmicas de los componentes y elementos de construcción en régimen estacionario.

IRAM 11603:1996 - Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina.

IRAM 11604:1999 - Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en calefacción. Coeficiente volumétrico G de pérdidas de calor. Cálculo y valores límites.

IRAM 11605:1996 - Acondicionamiento térmico de edificios. Condiciones de habitabilidad en edificios. Valores máximos de transmitancia térmica en cerramientos opacos.

IRAM 11630: 1999 - Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Verificación del riesgo de condensación de vapor de agua superficial e intersticial en los puntos singulares de muros exteriores, pisos y techos de edificios en general.

3 DEFINICIONES

Nota 1: Para los fines de esta norma, las definiciones tomadas de la norma IRAM 11549: 1993 fueron modificadas.

- **3.1 barrera de vapor.** Capa de material que, generalmente de espesor pequeño, ofrece una alta resistencia al pasaje del vapor. Para que un material se considere barrera de vapor, su permeancia debe ser menor que 0,75 g/m² h kPa.
- **Nota 2:** El solo cumplimiento de este valor no garantiza evitar la condensación intersticial, por lo que en todos los casos se deberá realizar la verificación prescripta en la presente norma.
- **3.2 freno de vapor.** Capa cuyo valor de permeancia al vapor de agua es mayor que 0,75 g/m² h kPa y que tiene por función reducir el pasaje de vapor de agua a un valor compatible con la verificación del riesgo de condensación intersticial.
- 3.3 condensación superficial. Condensación del vapor de agua sobre la superficie interna de los cerramientos exteriores, que se produce cuando la temperatura de dichas superficies sea igual o menor que la temperatura de rocío del aire del recinto que limitan.
- **3.4 condensación intersticial.** Condensación que se produce en la masa interior de un cerramiento exterior, como consecuencia de que el vapor de agua que lo atraviesa alcanza la presión de saturación y por lo tanto la temperatura de rocío, en algún punto interior de dicha masa.
- 3.5 permeabilidad al vapor de agua (δ). Cantidad de vapor de agua que pasa por unidad de tiempo a través de la unidad de superficie de un material o elemento constructivo, de caras plano paralelas y de espesor unitario, cuando la diferencia de presión de vapor entre sus caras es la unidad.

3.6 permeancia al vapor de agua (Δ). Cantidad de vapor de agua que pasa por unidad de tiempo a través de la unidad de superficie de un material o elemento constructivo de cierto espesor, cuando la diferencia de presión de vapor entre sus caras es la unidad. Cuando el material o elemento constructivo es homogéneo en todo su espesor (e), se cumple que:

$$\Delta$$
= δ /e.

Nota 3: A la permeancia al vapor de agua se lo simbolizaba anteriormente con la letra μ .

3.7 resistencia a la difusión del vapor de agua (R_v). Inversa de la permeancia al vapor de agua, suma de las resistencias de las capas uniformes y homogéneas de permeabilidad al vapor de agua (δ_i) y espesor (e_i), que constituyen el elemento constructivo de permeancia al vapor de agua (Δ), despreciándose las resistencias superficiales, de manera que:

$$R_v = 1/\Delta = \sum e_i/\delta_i$$
.

4 SIMBOLOGÍA

En la tabla 1 se establecen los símbolos, unidades y equivalencias correspondientes a las principales magnitudes que se utilizan en la presente norma.

Tabla 1 - Simbología, unidades y equivalencias.

Magnitud	Símbolo	Unidades	sept	Equivalencias
Conductividad térmica	. γ	SISTEMA TRADICIONAL Kcal mh °C	SIMELA W m K	$1 \frac{\text{kcal}}{\text{m h} \circ \text{C}} = 1,163 \frac{\text{W}}{\text{m K}}$
Resistencia térmica	œ	m²h∘C kcal	$\frac{m^2 K}{W}$	$1 \frac{m^2 h^{\circ}C}{kcal} = 0,86 \frac{m^2 K}{W}$
Transmitancia térmica	¥	kcal m² h °C	$\frac{W}{m^2 K}$	$1 \frac{\text{kcal}}{\text{m}^2 \text{ h} ^{\circ}\text{C}} = 1,163 \frac{\text{W}}{\text{m}^2 \text{ K}}$
Presión de vapor de agua	Ь	ттНд	Pa	1 Pa = 1 N/m ² \cong 0,102 $\frac{\text{kgf}}{\text{m}^2}$ 1 mmHg = 133,322 Pa 1 Pa = 10 ⁻⁵ bar
Permeabilidad al vapor de agua	ю	g cm mmHg m² d	gm MNs	$1 \frac{9 \text{ cm}}{\text{mmHg m}^2 \text{ d}} = 0.868 \times 10^{-3} \frac{9 \text{ m}}{\text{MN s}}$ $1 \frac{9 \text{ cm}}{\text{mmHg m}^2 \text{ d}} = 0.3125 \times 10^{-2} \frac{9}{\text{mh kPa}}$
Resistencia a la difusión del vapor de agua	Ą.	mmHg m² d g	MN s 9	$1 \frac{\text{mmHg m}^2 d}{9} = 11,52 \frac{\text{MN s}}{9}$ $1 \frac{\text{mmHg m}^2 d}{9} = 3,2 \frac{\text{m}^2 \text{h kPa}}{9}$
Permeancia al vapor de agua	∇	g mmHg m² d	g MN s	$1\frac{g}{\text{mmHg m}^2 d} = 0.868 \times 10^{-1} \frac{g}{\text{MN s}}$ $1\frac{g}{\text{mmHg m}^2 d} = 0.3125 \frac{g}{\text{m}^2 \text{ h kPa}}$

5 PROCEDIMIENTO DE CÁLCULO PARA LOS PAÑOS CENTRALES DE MUROS EXTERIORES, PISOS Y TECHOS

5.1 General

- **5.1.1** Los procedimientos de cálculo establecidos en esta norma para la verificación del riesgo de condensación superficial e intersticial, se refieren exclusivamente a los paños centrales de muros exteriores, pisos y techos de los edificios en general.
- **5.1.2** Los paños se consideran centrales hasta una distancia de 0,5 m de las aristas, que los limiten en su contorno.
- **5.1.3** Para la verificación de las condensaciones superficiales e intersticiales en los puntos singulares, se aplica lo establecido en la norma IRAM 11630.

5.2 Datos

5.2.1 Condiciones higrotérmicas exteriores

- **5.2.1.1 Temperatura exterior de diseño.** La temperatura exterior de diseño será la correspondiente a la localidad donde se proyecte el edificio. Se adoptarán los valores establecidos en la tabla 2 de datos climáticos de invierno de la norma IRAM 11603 para temperaturas mínimas de diseño.
- **5.2.1.2 Humedad relativa exterior.** Se adoptará el valor del 90%.

5.2.2 Condiciones higrotérmicas interiores

5.2.2.1 Temperatura interior de diseño. El valor de la temperatura interior de diseño será el indicado en la tabla 2, de acuerdo con el destino del local en estudio.

Tabla 2 - Temperatura interior de diseño.

Edificio o local	Temperatura
(Ver nota 1)	(°C)
Destinado a vivienda, enseñanza, comercio, trabajo sedentario y cultura.	18
Salones de actos, gimnasios y locales para trabajo ligero	15
Locales para trabajo pesado	12
Espacios para almacenamiento general	10

5.2.2.2 Humedad relativa interior de diseño. El valor de la humedad relativa interior de diseño se obtendrá de la figura 5, en función de la temperatura exterior de diseño, considerando hábitos de uso normales.

Nota 4: Para los edificios cuyo uso no está indicado en la tabla 2, como el caso de hospitales y, especialmente, piletas climatizadas, deberán adoptarse condiciones higrotérmicas interiores a partir de un análisis de la producción interior de vapor estimado. Se considerará el valor de la tasa de renovación de aire (ver norma IRAM 11604), el que deberá ser consistente con el

balance térmico y el proyecto de la instalación de calefacción.

Nota 5: En el anexo A, se dan pautas para la evaluación y el mejoramiento de las condiciones higrotérmicas interiores en viviendas.

5.2.3 Resistencia térmica superficial

5.2.3.1 Para la verificación del riesgo de condensación superficial se adoptará como valor de la resistencia térmica superficial interior 0,17 m² K/W, siendo el valor de la resistencia

térmica superficial exterior el indicado en la norma IRAM 11601.

- **5.2.3.2** Para la verificación del riesgo de condensación intersticial los valores de resistencia térmica superficial interior y exterior se obtendrán de la norma IRAM 11601.
- **5.2.4** Los valores de conductividad térmica de materiales de construcción se obtendrán de la tabla 6 de la norma IRAM 11601.
- **5.2.5** Los valores de permeabilidad y permeancia a considerar en los cálculos serán los establecidos en la tabla 11 de la norma IRAM 11601.

Los mismos se basan en ensayos según la norma IRAM 1735, correspondientes al campo seco, con una temperatura de 23 °C \pm 0,5 °C y una humedad relativa de 50% \pm 3%.

5.3 Método de verificación del riesgo de condensación superficial.

- **5.3.1** Se obtienen las condiciones higrotérmicas exteriores e interiores de acuerdo con lo indicado en los apartados 5.2.1 y 5.2.2.
- **5.3.2** La disminución de temperatura en la superficie interna se calcula mediante la fórmula siguiente:

$$\tau = \frac{R_{si} \Delta t}{R_t}$$

siendo:

- au la disminución de temperatura en la superficie interior del cerramiento, en grados Celsius;
- R_{si} la resistencia térmica superficial interior, en metros cuadrados kelvin por watt;
- R_t la resistencia térmica total del cerramiento, en metros cuadrados kelvin por watt;
- Δt la diferencia de temperatura entre el interior y el exterior, en grados Celsius.
- **5.3.3** La temperatura superficial interna se calcula con la fórmula siguiente:

$$\Theta_i = t_i - \tau$$

siendo:

- Θ_i la temperatura superficial interior del cerramiento, en grados Celsius;
- t_i la temperatura interior de diseño del local, en grados Celsius;
- τ la disminución de temperatura en la superficie interior o techo, en grados Celsius.

Nota 6: En los puntos singulares (rincones, aristas, puentes térmicos) se debe verificar la temperatura superficial interior de acuerdo con la norma IRAM 11630. Debe ser mayor que la temperatura de punto de rocío.

5.3.4 Con los valores de temperatura interior (t_i) y humedad relativa interior y utilizando el diagrama psicrométrico (ver figura 6) se obtiene la temperatura de rocío (t_r) , debiéndose cumplir que $t_r < \Theta_i$ para que no se produzca condensación de vapor de agua sobre la superficie del cerramiento considerado.

5.4 Método de verificación del riesgo de condensación intersticial.

5.4.1 Se calculan las temperaturas en los distintos planos de un cerramiento formado por varias capas de la manera siguiente:

$$t_1 = t_i$$

$$t_2 = t_i - \frac{\Delta t R_{si}}{R_t}$$

$$t_n = t_e$$

siendo:

- t₁; t₂;...t_n la temperatura en los planos considerados en grados Celsius;
 - t_i la temperatura interior de diseño, en grados Celsius;
 - t_e la temperatura exterior de diseño, en grados Celsius;
 - ∆t la diferencia de temperatura entre el interior y el exterior, en grados Celsius;
 - R_{si} la resistencia térmica de la parte del cerramiento ubicada hacia el interior

del local respecto del plano considerado, o bien, cuando corresponda, la resistencia térmica superficial interior, en metros cuadrados kelvin por watt;

- R_t la resistencia térmica total, en metros cuadrados kelvin por watt.
- **5.4.2** La resistencia a la difusión del vapor de agua de un cerramiento, compuesto por una serie de capas sucesivas de distintos materiales, se calcula con la fórmula siguiente:

$$R_v = \frac{e_1}{\delta_1} + \frac{e_2}{\delta_2} + ... + \frac{e_n}{\delta_n} + \frac{1}{\Delta}$$

siendo:

- R_v la resistencia a la difusión del vapor de agua del componente constructivo considerado, en metros cuadrados hora kilopascal por gramo;
- e₁; e₂;...; e_n el espesor de las capas sucesivas de materiales homogéneos del componente anterior, en metros;
- δ₁; δ₂;...; δ_n la permeabilidad al vapor de agua de las capas sucesivas de materiales homogéneos del componente anterior, en gramos por metros hora kilopascal;
 - Δ la permeancia de la barrera o freno de vapor, si los hubiere, en gramos por metros cuadrados hora kilopascal.
- **5.4.3** Mediante el diagrama psicrométrico (ver figura 6), conociendo las temperaturas y humedades relativas internas y externas, pueden calcularse las presiones de vapor de agua p_{vi} y p_{ve} del lado interno y externo, respectivamente.
- **Nota 7:** También podrán calcularse p_{vi} y p_{ve} utilizando la tabla de presiones de vapor de agua saturado (ver tabla 6), determinando para las temperaturas interior y exterior las correspondientes presiones de vapor saturado y multiplicando éstas por las respectivas humedades relativas.

- **5.4.4** Se calculan las presiones de vapor de agua en los distintos planos del cerramiento mediante el procedimiento siguiente.
- **5.4.4.1** Se admite la hipótesis de δ = constante, dentro de cada capa.

5.4.4.2 Se establece:

$$p_1 = p_{vi}$$

$$p_2 = p_{vi} - \Delta p \frac{R_{vi}}{R_v}$$

$$p_2 = p_{vi}$$

siendo:

- p₁; p₂;...; p_n la presión parcial de vapor de agua en los planos considerados, en kilopascales;
 - p_{vi} la presión parcial de vapor de agua interior, en kilopascales;
 - p_{ve} la presión parcial de vapor de agua exterior, en kilopascales;
 - Δp la diferencia de presión parcial de vapor de agua entre el interior y el exterior, en kilopascales;
 - R_{vi} la resistencia a la difusión del vapor de agua de la parte del cerramiento ubicada hacia el interior del local respecto del plano considerado, en metros cuadrados hora kilopascal por gramo;
 - R_v la resistencia a la difusión del vapor de agua del cerramiento, en metros cuadrados hora kilopascal por gramo.
- **5.4.5** Se determina la variación de presiones parciales de vapor de agua en el seno del cerramiento, tal como se indica en la figura 1 con línea de punto y raya, aceptándose una variación lineal de t_r entre los planos de verificación.
- **Nota 8:** Para la determinación del perfil de presiones parciales de vapor de agua en el seno del cerramiento se considera una variación lineal.

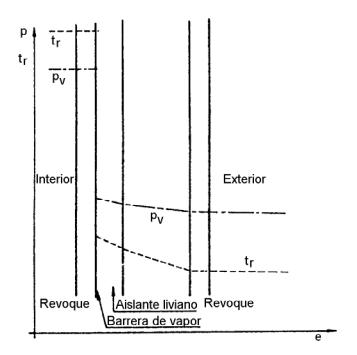


Figura 1

5.4.6 A cada una de las presiones graficadas en 5.4.5, le corresponde una temperatura de condensación o de rocío, que puede obtenerse del diagrama psicrométrico (ver figura 6) o de la tabla de presiones de vapor de agua saturado (ver tabla 6). Con ellas se dibuja el gráfico de temperaturas de rocío, en el seno del cerramiento, que no es lineal, tal como se muestra en punteado en la figura 2.

Nota 9: En el apartado A.4 se explica el uso del diagrama psicrométrico. Si se utiliza la tabla de presiones de vapor de agua saturado, la temperatura de rocío será aquella que corresponda a la presión de vapor que es dato. Se admite la interpolación lineal.

- **5.4.7** En las cámaras de aire débilmente ventiladas se considera la presión parcial de vapor de agua igual a la que corresponde al exterior y no se toman en cuenta las capas exteriores a la cámara de aire (ver ejemplo 2 del apartado A.6.2).
- **5.4.8** Superponiendo el gráfico de temperaturas de la pared o techo con el de temperaturas de rocío, se evidencia que se producirá condensación en aquellas zonas del seno del cerramiento en las que la temperatura del bulbo seco sea menor que la temperatura de punto de rocío. Se indica esta situación en la figura 2. Debiéndose cumplir que $t_r < t$, para que no se produzca condensación de vapor de agua en la masa del cerramiento.

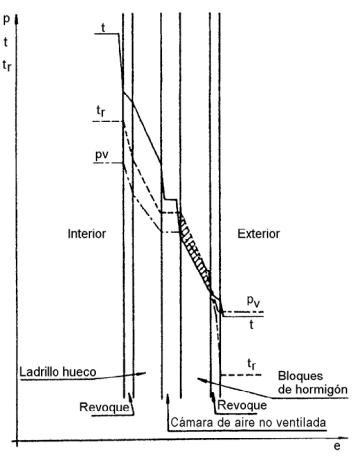


Figura 2

6 CONSIDERACIONES GENERALES

Esta norma permite un control del riesgo de condensación bajo condiciones de uso corriente, pero no elimina totalmente el riesgo de condensación en los puntos más comprometidos, tales como las aristas interiores (piso-pared, paredpared y pared-techo).

Para estos casos será de aplicación la norma IRAM 11630 con el fin de minimizar el riesgo de condensación en condiciones particulares.

Se aclara que el cumplimiento de los valores propuestos en esa norma no tiene relación con las condiciones de confort o de economía de energía consumida, sino está relacionado con las condiciones de salubridad de los ocupantes del edificio.

En los casos generales será muy importante evitar los puentes térmicos que representan un riesgo adicional. (Ver anexo A de la norma IRAM 11605).

Anexo A

(Informativo)

A.1 Recomendaciones de carácter general.

- **A.1.1** En lugares donde se produzcan habitualmente condensaciones superficiales transitorias, tales como vidrios o paredes opacas de cocinas y baños, por superarse allí comúnmente las condiciones higrotérmicas establecidas por esta norma, deben utilizarse materiales que no sean factibles de deterioro al estar en contacto con el agua.
- **A.1.2** Se recomienda que el valor máximo de transmitancia térmica K en baños y cocinas sea igual o menor que el indicado en la norma IRAM 11605, siempre que éste no supere el valor 1,78 W/m² K, para controlar el fenómeno de condensación superficial en la gran mayoría de los casos si simultáneamente se dispone de una ventilación adecuada.
- **A.1.3** En viviendas, el riesgo de condensaciones aumenta considerablemente cuando el volumen sea reducido, el grado de ventilación sea bajo o la producción de vapor de agua supere los niveles corrientes. En estos casos es conveniente, a los efectos de realizar las verificaciones que establece esta norma, aumentar el valor de la humedad relativa interior de diseño.
- **A.1.4** Se indican a continuación, una serie de pautas de diseño que deberán ser tenidas en cuenta para disminuir el riesgo de condensación en viviendas.
- a) Favorecer la ventilación cruzada interior (teniendo en cuenta las pérdidas de calor que esto ocasiona de acuerdo con lo indicado en la norma IRAM 11604).
- b) No instalar calefactores de gas sin tiraje exterior.
- c) Favorecer la extracción de aire en baños y cocinas por medios naturales o mecánicos.

A.2 Barreras y frenos de vapor.

- **A.2.1** Las barreras o frenos de vapor pueden ser necesarios para controlar los riesgos de condensación intersticial. Su función consiste en reducir la presión parcial de vapor dentro de la pared o techo, en las partes en las que comienza a disminuir la temperatura.
- **A.2.2** Pautas para el empleo de barreras de vapor.

La efectividad de una barrera de vapor se reduce e incluso puede volverse perjudicial por una incorrecta ubicación o por defectos en su colocación.

Es importante la realización de las juntas: se deben superponer las películas o mejor aún solaparlas.

Las grietas o perforaciones reducen asimismo la efectividad de la barrera de vapor. Sin embargo se recomienda considerar esta posibilidad y, de ser posible entonces deben preverse los medios que permitan la salida del vapor que atraviesa dicha barrera. La barrera de vapor se coloca en la cara caliente de la pared o en el lado caliente del aislante. De esta manera frena el vapor de agua en el lugar más adecuado e imposibilita que atraviese capas frías, evitando la condensación. Al encontrarse con la barrera "caliente" el vapor no puede condensarse en ella. Situada en un lugar inadecuado, la barrera de vapor imposibilita por un lado la difusión de vapor, e impide la evaporación de la humedad del o los

materiales componentes del elemento (muro o techo), facilitando la condensación del vapor sobre sus caras.

Nota 10: En todos los casos, la colocación de una barrera de vapor no exime de realizar las verificaciones prescriptas en esta norma.

A.3 Aislamiento térmico de pisos en contacto con el terreno.

- **A.3.1** Los pisos en contacto con el terreno natural presentan un comportamiento térmico particular, que difiere del de los restantes elementos que conforman la envolvente de un edificio. Por este motivo, en el apartado A.3.2 a A.3.5 se dan recomendaciones para el aislamiento térmico de pisos en edificios de viviendas ubicados en las zonas bioambientales 5 y 6, según la norma IRAM 11603. Estas recomendaciones, además de contribuir a la disminución de las pérdidas de calor con el consiguiente ahorro de energía, permiten minimizar los riesgos de condensación superficial e intersticial en los pisos.
- **A.3.2** Pisos sobre terreno natural. Se requiere una capa de aislación térmica en forma perimetral con las medidas mínimas que se indican en la figura 7.
- A.3.3 Platea de hormigón sobre cámara de aire ventilada (ver figura 8).
- Se debe prever su ventilación (mínimo 1% de la sección en planta), disponiendo las entradas y salidas de aire lo más altas posibles.
- b) Se debe disponer una capa de aislación hidráulica bajo el aislante térmico.
- **A.3.4** Pisos de madera separados del terreno (ver figura 9).
- a) Se debe disponer una capa de aislación térmica perimetral.
- b) Se debe ventilar la cámara en forma cruzada disponiendo un zócalo abierto o bocas de registro.
- **A.3.5** Vigas de fundación. Se debe disponer la aislación térmica de acuerdo con la figura 10.

A.4 Diagrama psicrométrico.

La figura 6 muestra la interdependencia de la humedad relativa (escala vertical izquierda), temperatura de bulbo seco (escala horizontal), y el contenido de humedad expresado en masa de vapor de agua por unidad de masa de aire seco (escala vertical derecha). Un ejemplo de esta relación se muestra por medio de los puntos de referencia A-B-C-D, marcados en el diagrama, y que representan las siguientes condiciones: en A la temperatura exterior del bulbo seco es 0 °C, el contenido de humedad es 3,4 g/kg de aire seco, lo que da una HR del 90%.

Si se calienta este aire a 20 °C, y el contenido de humedad permanece constante, la HR será ahora de 23% (punto B).

Si como resultado de diversas actividades en el interior de la vivienda, el contenido de humedad aumenta a 10,3 g/kg, a la misma temperatura, la HR aumentará el 70% (punto C).

El punto D indica la temperatura de rocío de la mezcla resultante aire/humedad, de lo que se deduce que la condensación ocurrirá si las paredes contiguas del edificio a las cuales el aire tiene acceso se enfrían por debajo de 15 °C.

A.5 Planilla de cálculo.

A los efectos de ordenar y facilitar los cálculos necesarios para la aplicación de esta norma, se incluye en la tabla 3 una planilla de cálculo, acompañada con las correspondientes referencias para su correcta utilización.

Tabla 3 - Planilla de cálculo.

CAPA [1]	e [2]	7[3]	R [4]	t [5]	δ [6]	R _v	H 18	P [9]	t _r [10]	Δ _T [11]
°Z	٤	W/mK	$m^2 K/W$	ပွ	g/mhkPa	m² h kPa / g	%	кРа	ပွ	ပွ
AIRE INTERIOR										
1 RESIST. SUP. INT.			•							
2				-						
3										
				•						
4			.							
2										
				<u>'</u>						
9							•			
7										
8							•			
6										
				<u>'</u>						
10 RESIST. SUP. EXT.										
AIRE EXTERIOR										
TOTAL										

Referencias (Tabla 3).

- [1] Capa del cerramiento: Se indican las capas del elemento constructivo desde el interior (Resistencia térmica superficial interior R_{si}) hacia el exterior.
- [2] Espesor (e): Se indican los espesores de cada capa.
- [3] Conductividad térmica (λ): Se indica la conductividad térmica de cada capa homogénea según los valores de la tabla 6 de la norma IRAM 11601.
- [4] Resistencia térmica (R): Se indica la resistencia térmica de cada capa:
 - Materiales homogéneos: Se calcula con la fórmula siguiente:

 $R = e/\lambda$

siendo:

- R la resistencia térmica, en metros cuadrados kelvin por watt;
- e el espesor, en metros;
- λ la conductividad térmica, en watt por metros kelvin.
- Cámara de aire: Sin ventilar, se obtiene de la tabla 4 de la norma IRAM 11601.

Ventilada, se obtiene de acuerdo con los apartados 5.2.2.1 ó 5.2.2.2 de la norma IRAM 11601 según corresponda.

- Resistencias térmicas superficiales: Se obtienen de la tabla 3 de la norma IRAM 11601.

Nota 10: Para la verificación del riesgo de condensación superficial se adoptarán los valores indicados en la tabla 3 de la presente norma.

Se indica en el último renglón la resistencia térmica total, como la suma de la columna [4].

[5] Temperaturas (t): Se indican la temperatura interior de diseño (aire interior) y la temperatura exterior de diseño (aire exterior).

Se calcula la temperatura entre cada capa con la fórmula dada en el apartado 5.3.2. Se indica en el último renglón la diferencia entre la temperatura interior y exterior.

- [6] Permeabilidad al vapor de agua (δ): Se indica la permeabilidad al vapor de agua de cada capa homogénea de acuerdo con el apartado 5.2.5.
- [7] Resistencia a la difusión del vapor de agua (R_v): Se calcula la resistencia a la difusión del vapor de agua de cada capa homogénea de acuerdo con lo indicado en el apartado 5.4.2.

Si la capa fuese una barrera de vapor, la resistencia al vapor de agua se calcula con la fórmula siguiente:

$$R_v = \frac{1}{\Lambda}$$

siendo:

- R_v la resistencia al vapor de agua de la barrera de vapor, en metros cuadrados hora kilopascal por gramo;
- Δ la permeancia al vapor de agua de la barrera de vapor, en gramos por metros cuadrados hora kilopascal.

Se indica en el último renglón la resistencia al vapor de agua total R_v , como suma de la columna [7].

- [8] Humedad relativa (HR): Se indican las humedades relativas de diseño interior y exterior.
- [9] Presión de vapor de agua (P): Se indican las presiones de vapor de agua del aire interior y exterior, las que se obtienen mediante el diagrama psicrométrico (ver figura 6) o la tabla de vapor de agua saturado (ver tabla 6), teniendo como datos la temperatura (col. [5]) y la humedad relativa (col. [8]).

Se calcula la presión de vapor de agua entre cada capa de acuerdo con lo establecido en el apartado 5.4.4.

Se indica en el último renglón la diferencia entre la presión de vapor interior y exterior (Δp).

- [10] Temperatura de rocío (t_r): Se indican las temperaturas de rocío del aire interior y exterior, además de las correspondientes a cada junta entre capas, las cuales se obtienen mediante el diagrama psicrométrico (ver figura 6) o la tabla de presiones de vapor de agua (ver tabla 6).
- [11] Diferencia de temperaturas (Δt): Se indica la diferencia entre la temperatura de bulbo seco (col. [5]) y la temperatura de rocío (col. [10]). Si alguna de las diferencias resulta negativa, este resultado muestra la existencia de condensación.

A.6 Ejemplos de verificación de condensaciones.

A.6.1 Ejemplo 1: Sea una pared multicapa conformada de acuerdo con lo indicado en la figura 3. Los espesores y propiedades térmicas de las distintas capas de la pared y las condiciones higrotérmicas interiores y exteriores están dados en las tablas 4a y 4b. Se completan las restantes columnas de la planilla de cálculo (ver tabla 3), de acuerdo con lo indicado en el apartado A.5.

En la tabla 4a se da el ejemplo 1 para la verificación del riesgo de condensación superficial y en la tabla 4b se da el ejemplo 1 para la verificación del riesgo de condensación intersticial.

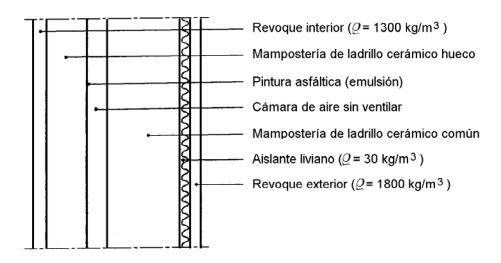


Figura 3

A.6.1.1 Verificación del riesgo de condensación superficial.

A.6.1.1.1 Con los datos de la tabla 4a (col. [5]), se obtiene la diferencia de temperaturas entre el aire interior y el aire exterior (Δt).

$$\Delta t = t_i - t_e = 18 - (-3) = 21 \,^{\circ}\text{C}$$

A.6.1.1.2 Con los valores de la col. [4] de la tabla 4a, se obtiene la resistencia térmica total del muro (R_t) , adoptando para la resistencia térmica superficial interior el valor $0,17\ m^2\ K/W$, de acuerdo con lo indicado en el apartado 5.2.3.1.

$$R_t = 0.17 + 0.01 + 0.23 + 0.16 + 0.16 + 0.57 + 0.01 + 0.04 = 1.35 \text{ m}^2 \text{ K/W}$$

A.6.1.1.3 Con la fórmula dada en el apartado 5.3.2, se calcula la disminución de temperatura en la superficie interior del muro (τ) .

$$\tau = \frac{R_{si} \Delta t}{R_{t}} = 0.17 \cdot \frac{21}{1.35} = 2.64 \text{ }^{\circ}\text{C}$$

A.6.1.1.4 De acuerdo con la fórmula dada en el apartado 5.3.3 se calcula la temperatura superficial interior (Θ_i) .

$$\Theta_i = t_i - \tau = 15.4 \,^{\circ}\text{C}$$

A.6.1.1.5 Resultado. Del diagrama psicrométrico (ver figura 6) se obtiene la temperatura de rocío para el aire a 18 °C con una humedad relativa del 63 %. Como la temperatura de rocío ($t_r = 10,8$ °C) es menor que la temperatura superficial interior ($\Theta_i = 15,4$ °C) no existe condensación superficial.

A.6.1.2 Verificación del riesgo de condensación intersticial.

Con los valores obtenidos en la columna [11] de la tabla 4b, se verifica que no existe condensación intersticial. Se aprecia que en los puntos ubicados en el interior del muro, la temperatura de bulbo seco (col. [5]) es siempre mayor que la correspondiente temperatura de rocío (col. [10]). Esto último puede comprobarse también, trazando el perfil de temperaturas en el seno del muro, de acuerdo con lo indicado en los apartados 5.4.6 y 5.4.7.

Tabla 4a - Planilla de cálculo (Ejemplo 1a). Verificación del riesgo de condensación superficial.

CAPA	Ф	7	α.	+	δ	ď	HR	Д	ئہ	$\Delta_{ m T}$
	[2]	[3]	[4]	[2]	[9]	[2]	[8]	[6]	[10]	[11]
	٤	W/mK	$m^2 K/W$	ပွ	g/mhkPa	m²h kPa / g	%	кРа	ပွ	ပွ
	ı	1	1	18,000	1	1	63	1,300	10,839	7,161
	1	•	0.170	15,370	•	-	'	1,300	10,839	4,531
); ;	15 170				1 281	10 620	7 550
	0.045	1 160	0.043	2, 5	090 0	0020		107,1	10,020	, t
	0,013	1,100	0,013	11 612	Oco,o	0,000	-	1 255	10 300	1 303
3 Mampostería de ladrillo	0800	•	0860	2.0,	0 190	1070	İ	007,1	0,003	505,-
	0,00		0,500	11 612	0, '0	121.0		0629	0.402	11 210
				2.0,		10,000		0,020	0,105	01.2,11
	•	-	•	0 136	_	000,01	•	0630	0.402	8 734
	070	I	0.480	, - -				0,020	0,105	5.0
	0,040	•	0,100	6 659	•	_	'	0.539	-1 709	8368
6 Mampostería de ladrillo	0.130	0.842	0.480	0,00	080 0	777 7	•	0,0	001,1	0,000
	0,130	0,012	0,100	-2 181	0.030	† † †	ı	0.455	-3 705	1 521
		3000	0.674) O	770	1 000		6,166	C,1 CC	- 70,-
	0,020	0,035	1,5,0	-2 381	0,013	.,oo	-	0.430	1 135	2.051
	0.045	1 160	0.042	-2,001	260 0	0 405		0,100	4,400	2,00
	0,0	1,100	0,0		0,037	0,403	ı			
	-	-	0,040	-	-	-	-	-	_	-
	-	-	-	-3,000	-	-	90	0,430	_	-
	-	-	1,357	21,000	ı	13,903	-	0,870	_	•

Tabla 4b - Planilla de cálculo (Ejemplo 1b). Verificación del riesgo de condensación intersticial.

CAPA [1]	e [2]	۲ [3]	R [4]	t [5]	§ [6]	љ. [7	景 図	P [9]	t _r [10]	$\Delta_{\rm T}$ [11]
°Z	٤	W/mK	$m^2 K/W$	ွ	g/mhkPa	m²h kPa / g	%	кРа	ပွ	ပွ
AIRE INTERIOR	-	-	-	18,000	-	-	63	1,300	10,839	7,161
1 RESIST, SUP, INT.	ı	•	0.130	15,928	•	•	1	1,300	10,839	5,089
				15 722				1 281	10,620	לט1 צ
2 Revogue interior	0.015	1 160	0.013	13,122	0.050	00300	'	102,1	0,020	, O
	0,0	., .	0,0	12.055	0,00	0,00		1 255	40.300	1 7 / 7
3 Mampostería de ladrillo	USUU		030	12,000	0 100	1610		002,1	600,01	1,747
(cerámico hueco)	0,000	•	0,230	12.055	0,130	0,421	_	0690	0.402	11 653
4 Barrera de vapor	ı	I		12,000	1	10.000	1	0,029	704,0	000,11
(pintura asfáltica)	1	•	1	9 505	1	0,00	_	0630	0.402	0 103
5 Cámara de aire	0700	1	0.460	3,200	1			0,023	0,402	9,100
(sin ventilar)	0,040	•	0,100	6 053	1	1	_	0.530	1 700	8 661
6 Mampostería de ladrillo	0.130	0 812	0.160	0,900	0600	777 7	1	6,0	607,1-	0,00
(cerámico común)	0,130	210,0	0,100	_2 15G	0,030	† † †	_	0.455	-3 705	1 5/10
oacivil otaclaiv 7	0000	3800	0.574	-2,100	0.015	1 333		0,70	0,1,0-	6t0,-
Alsiante niviano	0,020	0,033	1,0,0	7 367	0,0	, coo,	_	0.430	7 135	2000
o Douglastics	0.04	1 160	0.042	-2,002	0.037	0.406		0,40	1,400	2,012
o Nevoque exterior	0,0	1,100	0,0		750,0	0,400	_			
9 RESIST. SUP. EXT.	ı	-	0,040	-	ı	1	_	1	1	1
AIRE EXTERIOR	-	-	-	-3,000	ı	-	90	0,430	-	-
TOTAL	1	1	1,317	21,000	•	13,903	1	0,870		

A.6.2 Ejemplo 2: Sea un techo, cuya conformación se muestra en la figura 4. Los espesores y propiedades térmicas de las distintas capas del techo y las condiciones higrotérmicas interiores y exteriores están dados en las tablas 5a y 5b. Se completan las columnas restantes de la planilla de cálculo (ver tabla 3) de acuerdo con lo indicado en el apartado A.5.

En la tabla 5a se da el ejemplo 2 para la verificación del riesgo de condensación superficial y en la tabla 5b se da el ejemplo 2 para la verificación del riesgo de condensación intersticial.

Nota 11: Se considera el ático muy ventilado, por lo que no es tenido en cuenta en los cálculos térmicos.

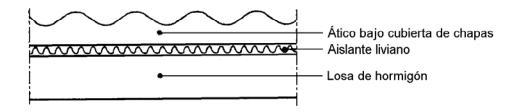


Figura 4

A.6.2.1 Verificación del riesgo de condensación superficial.

A.6.2.1.1 Se procede en forma análoga a lo indicado en el apartado 5.3 calculando Δt , R_t . τ y Θ_i .

$$\Delta t = t_i - t_e = 18 - (-5,3) = 23,3 \text{ °C}$$

$$R_t = 0,17 + 0,07 + 0,61 + 0,04 = 0,89 \text{ m}^2 \text{ K/W}$$

$$\tau = \frac{R_{SI} \Delta t}{R_t} = \frac{0,17 \cdot 23,3}{0,89} = 4,45 \text{ °C}$$

$$\Theta_i = t_i - \tau = 13.6 \text{ °C}$$

A.6.2.1.2 Resultado. Del diagrama psicrométrico (ver figura 6) se obtiene la temperatura de rocío para el aire a 18 °C con una humedad relativa del 60 %. Como la temperatura de rocío ($t_r = 10,1$ °C) es menor que la temperatura superficial interior ($\Theta_i = 13,6$ °C), no existe condensación superficial.

A.6.2.2 Verificación del riesgo de condensación intersticial.

De los valores obtenidos en la columna [11] de la tabla 5b se verifica que no exista condensación intersticial.

Tabla 5a - Planilla de cálculo (Ejemplo 2a). Verificación del riesgo de condensación superficial.

CAPA [1]	e [2]	γ [3]	R [4]	t [5]	[9] §	R _v [7]	HR [8]	P [9]	t, [10]	Δ _τ [11]
°Z	ш	W/mK	$m^2 K/W$	၁့	g/mhkPa	m²h kPa/g	%	кРа	၁့	၁ွ
AIRE INTERIOR	-	1	1	18,000	-	-	09	1,240	10,130	7,870
1 DECICT CLID INT			0.470	13,566				1,240	10,130	3.436
INEGIOI. GOF. INT.	1		0,10	11 646		1	1	0.642	1 500	10 000
0 C	7.00	1 620	7000	0+0,11	0000	000 9		0,043	-1,392	13,230
z normigon armado	0,120	1,030	0,074	1 257	0,020	0,000	ı	0.050	020 9	7 604
Cacinil charles A	3000	2.0	7	167,4-	9800	233 1		0,000	0,0,0-	1 20,2
5 Aisiante liviano	0,025	0,0	0,0		610,0	700,1	ı			
4 RESIST. SUP. EXT.	-	-	0,040	'	-	-	ı	_	_	•
AIRE EXTERIOR	ı	-	ı	-5,300	-	-	06	0,350	1	•
TOTAL	-	1	0,894	23,300	-	7,667	ı	0,890	-	1

Tabla 5b - Planilla de cálculo (Ejemplo 2b). Verificación del riesgo de condensación intersticial.

CAPA [1]	e [2]	[8] Y	R [4]	t [5]	δ [6]	R _v	HR [8]	P [6]	t _r [10]	$\Delta_{\!\scriptscriptstyle T}$ [11]
٥N	ш	W/mK	m ² K / W	၁့	g/mhkPa	m²h kPa / g	%	кРа	၁့	၁့
AIRE INTERIOR	1	-	1	18,000	•	1	09	1,240	10,130	7,870
TIMI CITIS TSISSE			007	15,170				1,240	10,130	5,040
	'	1	0,100	10.007	'	I	ı	0.17	4 500	44.670
0 0 000000 0 00000 0 00000 0 00000	700	4 600	7200	13,007	0000	000 9		0,045	760,1-	14,07,9
z nomigon amiado	0,120	0.00,1	0,074	7 160	0,020	0,000		0.250	000 3	002.0
	7.00	7	20	4, 100	0 7	4 000		0,000	000,0-	2,720
3 Aisiante liviano	0,025	0,04	0,010		0,015	/00,1	ı			
4 RESIST. SUP. EXT.	-	-	0,040	_	-	-	ı	-	_	_
AIRE EXTERIOR	-	-	-	-5,300	-	-	06	0,350	-	-
TOTAL	1	1	0,824	23,300	1	299'2	-	068'0	-	1

A.6.3 Ejemplos 2c y 2d

Se verifica el mismo techo del apartado A.6.2, pero aplicando el método simplificado para el cálculo de las resistencias térmicas del mismo introducido en la IRAM 11601, para techos con áticos. El procedimiento de cálculo es similar al explicado en el apartado A.6.2, con las variantes que se indican en las notas al pie de cada planilla de cálculo.

Tanto en éstos ejemplos como en los del apartado A.6.2, se trata de un techo con un ático muy ventilado.

Tabla 5c - Planilla de cálculo (Ejemplo 2c). Verificación del riesgo de condensación superficial. Ejemplo: Ático muy ventilado (según el método simplificado IRAM 11601).

CAPA [1]	e [2]	√ [5]	R [4]	T [5]	δ [6]	R _v	H 8	P [9]	t. [10]	Δ _T
Š	Е	W/m.K	m ² .K/W	၁့	g/m.h.kPa	m²h.kPa/g	%	кРа	၁ _့	၁့
AIRE INTERIOR	١	1	1	40,000	1	Ī	75	4 540	10 501	3077
1 Resistencia superfi-	1	1	0.170	16,000	1	1	ı	1,049	13,304	4,490
cial interior	I		0, 1, 0	16 407			I	1 5/0	13 504	2 003
2 Losa de hormigón	0.120	1 630	0.074	10,431	0000	0009	I	,- + 0,-	10,00	6,330
armado (0,12 m)	0,120	000,-	0,011	15 816	0,050	000,0		1 5///	13 153	2 303
3 Barrera de vapor	•	•	•	0,040	•	1000 000	ı	-, - + +	0,4,01	2,030
(aluminio 0,025 mm)		1		1E 91E		000,000	Ī	0 600	1 720	11 106
4 Aislante térmico livia-	0.055	0.071	1 3/1	13,040	0.015	299 &	ı	0,032	1,720	14,120
no (0,055 m)	0,000	0,0	1,041	7 087	0,0	2,00,0		0890	1 657	7 3 2 7 7
5 Resistencia térmica	'	•	0.100	5,304	'	-	ı	0,003	700,1	2,321
superficial superior	I		0,100	3 100			I	0890	1 657	1 113
9	•	1	•	3,100	1	Ī	ı	0,009	700,1	0,44,0
	I	İ	l				I			
7	•	1	•	ı	1	•	ı	•	1	ı
		1								
8	I	ı	1	-	1	I	I	-	-	ı
		1					1			
6	1	1	Ī		I	I	1	-		1
AIRE EXTERIOR	_	ı	-	3,100	1	I	90	0,689	1,657	1,443
TOTAL	I	1	1,685	14,900	-	1009,667	ı	0,860	1	1

Verificación del riesgo de condensación superficial:

Temperatura superficial 16,497 °C > Temperatura de rocío 13,500 °C, no existe condensación superficial.

NOTA 1: La permeancia de la lámina de aluminio es 0, por lo tanto, la resistencia a la difusión de vapor de agua es infinito. Para el cálculo, adoptamos un valor lo suficientemente elevado en comparación a la resistencia a la difusión de las otras capas, como por ejemplo, en este caso, 1000 m²h.kPa/g.

NOTA 2: Deben considerarse los eventuales puentes térmicos geométricos y/o constructivos.

Tabla 5d - Planilla de cálculo (Ejemplo 2d). Verificación del riesgo de condensación intersticial. Ejemplo: Ático muy ventilado (según el método simplificado IRAM 11601).

	2	√ [ე	<u>ፕ </u>	T [5]	S [6]	R _v [7]	HR [8]	P [9]	t, [10]	Δ _τ [11]
°Z	٤	W/m.K	m².K/W	ွ	g/m.h.kPa	m²h.kPa/g	%	кРа	၁့	ွ
AIRE INTERIOR	-	1	1	10.000	ı	-	75	4 540	10 EOA	3011
1 Resistencia	1	ı	0,100	19,000	ı	ı	-	9.4 9.4	13,304	4,430
	9	000	0.07	17,077	0	000		1,549	13,504	3,574
	0,120	1,030	0,074	16 308	0,020	0,000	1	1 5//	13 153	2006
3 Barrera de vapor	•	1	1	060,01	ı	1000,000	-	1,744	13,433	2,940
(aluminio 0,025 mm)				16 308		`		0 692	1 720	11 678
4 Aislante térmico	0,055	0,041	1,341	060,01	0,015	3,667	ı	0,038	1,120	0,0,4
IIVIAIIO (U,U33 III)				4.023				0.689	1,657	2.366
5 Resistencia térmica	ı	•	0.100	220,1	ı	1	ı	2),0		1,000
superficial superior)	3 100				0890	1 657	1 113
9	1	ı	1	3,100	-	ı	-	0,00	100,1	- - -
2				•				ı	I	•
	1	ı	1		I	I	1			
8	ı	1		•	I		I	•	_	•
	I	ı	ı		1	•	ı			
6	-	•	-	•	-	-	-	_	_	•
AIRE EXTERIOR	1	1	-	3,100	1	-	06	0,689	1,657	1,443
TOTAL	-	1	1,615	14,900	-	1009,667	•	0,860	I	1

<u>Transmitancia térmica:</u> 0,62 W/m²K (Rt = 1,615 m²K/W), verifica según IRAM 11605 para condiciones de invierno (nivel "B") y condiciones de verano (nivel "C") para colores de terminación claros y medianos en zonas I a IV.

Verificación del riesgo de condensación intersticial:

En todas las capas se verifica que la Temperatura > Temperatura de rocío, por lo que no existe condensación intersticial.

NOTA: Deben considerarse los eventuales puentes térmicos geométricos y/o constructivos.

A.6.4 Ejemplos 2e y 2f

Se verifica el mismo techo del apartado A.6.2, pero aplicando el método simplificado para el cálculo de las resistencias térmicas del mismo introducido en la IRAM 11601. El procedimiento de cálculo es similar al explicado en el apartado A.6.2, con las variantes que se indican en las notas al pie de cada planilla de cálculo.

En este caso se trata de un techo con un ático no ventilado o débilmente ventilado.

Tabla 5e - Planilla de cálculo (Ejemplo 2e). Verificación del riesgo de condensación superficial. Ejemplo: Ático no ventilado o débilmente ventilado (según el método simplificado IRAM 11601).

Δ_{T}	၁့	9077	, , , , ,	2,895	2,358	14,091	7900	5,004	2,564		ı	ı	ı	ı	1,443	1
t, [10]	၁	13 501	10,00	13,504	13,453	1,720	1 667	/co,1	1,657		•	1	1	1	1,657	-
P [9]	кРа	1 5/10	0 4. C 4	1,549	1,544	0,692	0000	600,0	0,689		'	1	1	1	0,689	0,860
HR [8]	%	22	1	1	•		ı	1		ı	ı	ı	1	1	96	-
R _v	m²h.kPa/g	1	1	6,000	1000,000		3,667	ı		1	1	1	1	1	•	1009,667
δ [6]	g/m.h.kPa	-	-	0,020	ı		0,015	ı		1	1	1	•	1	1	-
T [5]	၁့	18 000	10,000	10,399	15,811	15,811	F 0.04	120,6	4,221	007.0	3,420	3,420	1	ı	3,100	14,900
R [4]	m^2 .K/W	•	0,170	0,063	1		1,146	0,085	C	0,085	0,000	ı	1	0,034	ı	1,582
λ [3]	W/m.K	•	ı	1,920	1		0,048	ı		ı	1	ı	•	1	'	-
e [2]	ш	•	-	0,120	ı	1	0,055	I		ı	ı	1	ı	1	ı	1
CAPA [1]	N°	AIRE INTERIOR	 Resistencia superficial interior 	2 Losa de hormigón armado (0.12 m)	3 Barrera de vapor	4 Aislante térmico liviano		5 Resistencia térmica su-	6 Resistencia térmica	inferior cubierta	7 Cubierta de chapa	8	6	10 Resistencia superficial exterior	AIRE EXTERIOR	TOTAL

Verificación del riesgo de condensación superficial:

Femperatura superficial 16,399 °C > Temperatura de rocío 13,500 °C, no existe riesgo de condensación superficial.

NOTA 1: Para cumplir con el método simplificado de la norma IRAM 11601, las resistencias térmicas superficiales (exceptuando la resistencia superficial interior), se multiplicaron por 0,85, y las conductividades térmicas por 1/0,85.

NOTA 2: Deben considerarse los eventuales puentes térmicos geométricos y/o constructivos.

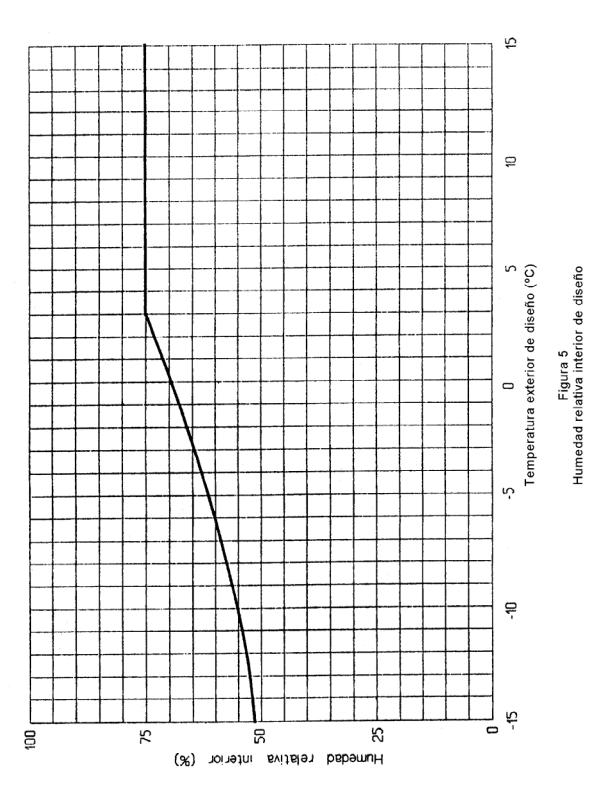
Tabla 5f - Planilla de cálculo (Ejemplo 2f). Verificación del riesgo de condensación intersticial. Ejemplo: Ático no ventilado o débilmente ventilado (según el método simplificado IRAM 11601).

Δ _T	ပွ	1 106	4,430	3.650	2 070	0,0,0	14,812	3,473	7696	2,027	ı		1	1		I	1,443	ı
t, [10]	ပ္	12 501	13,304	13.504	12 153	0,400	1,720	1,657	1 657	/coʻ1	1		'	1		ı	1,657	ı
Ы В	кРа	1 540	940,-	1.549	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	440,-	769,0	0,689	0000	600,0	1		1	1		I	0,689	0,860
유 🗵	%	75	ı		-	1	1		1	ı		ı	1		ı	ı	06	ı
% [∑	m²h.kPa/g	1	1		6,000	1000,000	3,667		ı	ı		1	1		ı	1	1	1009,667
δ [6]	g/m.h.kPa	1	ı		0,020	-	0,015		ı	ı		1	ı		ı	ı	ı	ı
t [5]	၁့	10 000	000,01	17.154	16 537	10,332	10,332	5,130	VOC V	4,204	3 438	0,100	0,400	ı		ı	3,100	14,900
R [4]	m ² .K/W	-	0,085	,	0,063	ı	1,146		0,085	0,085		0,000	1		1	0,034	1	1,497
γ [3]	W/m.K	•	ı		1,920	-	0,048		ı	1		1	I		1	ı	1	ı
e [2]	Е	•	1		0,120	-	0,055		ı	ı		1	ı		ı	ı	1	1
CAPA [1]	°Z	AIRE INTERIOR	1 Resistencia superficial		2 Losa de hormigón arma- do (0,12 m)	3 Barrera de vapor (alumi- nio 0,025 mm)	4 Aislante térmico liviano	S Resistencia térmica su-		6 Resistencia térmica infe-		7 Cubierta de chapa	8	6		10 Resistencia superficial exterior	AIRE EXTERIOR	TOTAL

Verificación del riesgo de condensación intersticial: En todas las capas se verifica que la Temperatura > Temperatura de rocío, por lo que no existe condensación intersticial.

NOTA 1: Para cumplir con el método simplificado de la norma IRAM 11601, las resistencias térmicas superficiales (exceptuando la resistencia superficial interior), se multiplicaron por 0,85, y las conductividades térmicas por 1/0,85.

NOTA 2: Deben considerarse los eventuales puentes térmicos geométricos y/o constructivos


Tabla 6 - Presiones de vapor de agua saturado

Temperatura	Presiones de vapor de agua										
°C	Pa										
-0	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9	
30	4244	4269	4294	4319	4344	4369	4394	4419	4445	4469	
29	4006	4030	4053	4077	4101	4148	4148	4172	4196	4219	
28	3781	3803	3826	3848	3871	3894	3916	3939	3961	3984	
27	3566	3588	3609	3631	3652	3674	3695	3717	3793	3759	
26	3362	3382	3403	3423	3443	3463	3484	3504	3525	3544	
25	3169	3188	3208	3227	3246	3266	3284	3304	3324	3343	
24	2985	3003	3021	3040	3059	3077	3095	3114	3132	3151	
23	2810	2827	2845	2863	2880	2897	2915	2932	2950	2968	
22	2645	2661	2678	2695	2711	2727	2744	2761	2777	2794	
21	2487	2504	2518	2535	2551	2566	2582	2598	2613	2629	
20	2340	2354	2369	2384	2399	2413	2428	2443	2457	2473	
19	2197	2212	2227	2241	2254	2268	2283	2297	2310	2324	
18	2065	2079	2091	2105	2119	2132	2145	2158	2172	2185	
17	1937	1950	1963	1976	1988	2001	2014	2027	2039	2052	
16	1818	1830	1841	1854	1866	1878	1889	1901	1914	1926	
15	1706	1717	1729	1739	1750	1762	1773	1784	1795	1806	
14	1599	1610	1621	1631	1642	1653	1663	1674	1684	1695	
13	1498	1508	1518	1528	1538	1548	1559	1569	1578	1588	
12	1403	1413	1422	1431	1441	1451	1460	1470	1479	1488	
11	1312	1321	1330	1340	1349	1358	1367	1375	1385	1394	
10	1228	1237	1245	1254	1262	1270	1279	1287	1296	1304	
9	1148	1156	1163	1171	1179	1187	1195	1203	1211	1218	
8	1073	1081	1088	1096	1103	1110	1117	1125	1133	1140	
7	1002	1008	1016	1023	1030	1038	1045	1052	1059	1066	
6	935	942	949	955	961	968	975	982	988	995	
5	872	878	884	890	896	902	907	913	919	925	
4	813	819	825	831	837	843	849	854	861	866	
3	759	765	770	776	781	787	793	798	803	808	
2	705	710	716	721	727	732	737	743	748	753	
1	657	662	667	672	677	682	687	691	696	700	
0	611	616	621	626	630	635	640	645	648	653	

(Continúa)

Tabla 6 (fin)

Temperatura	Presiones de vapor de agua									
°C	Pa									
10	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
-0	611	605	600	595	592	587	582	577	572	567
-1	562	557	552	547	543	538	534	531	527	522
-2	517	514	509	505	501	496	492	489	484	480
-3	476	472	468	464	461	456	452	448	444	440
-4	437	433	430	426	423	419	415	412	408	405
-5	401	398	395	391	388	385	382	379	375	372
-6	368	365	362	359	356	353	350	347	343	340
-7	337	336	333	330	327	324	321	318	315	312
-8	310	306	304	301	298	296	294	291	288	286
-9	284	281	279	276	274	272	269	267	264	262
-10	260	258	255	253	251	249	246	244	242	239
-11	237	235	233	231	229	228	226	224	221	219
-12	217	215	213	211	209	208	206	204	202	200
-13	198	197	195	193	191	190	188	186	184	182
-14	181	180	178	177	175	173	172	170	168	167
-15	165	164	162	161	159	158	157	155	153	152
-16	150	149	148	146	145	144	142	141	139	138
-17	137	136	135	133	132	131	129	128	127	126
-18	125	124	123	122	121	120	118	117	116	115
-19	114	113	112	111	110	109	107	106	105	104
-20	103	102	101	100	99	98	97	96	95	94

33

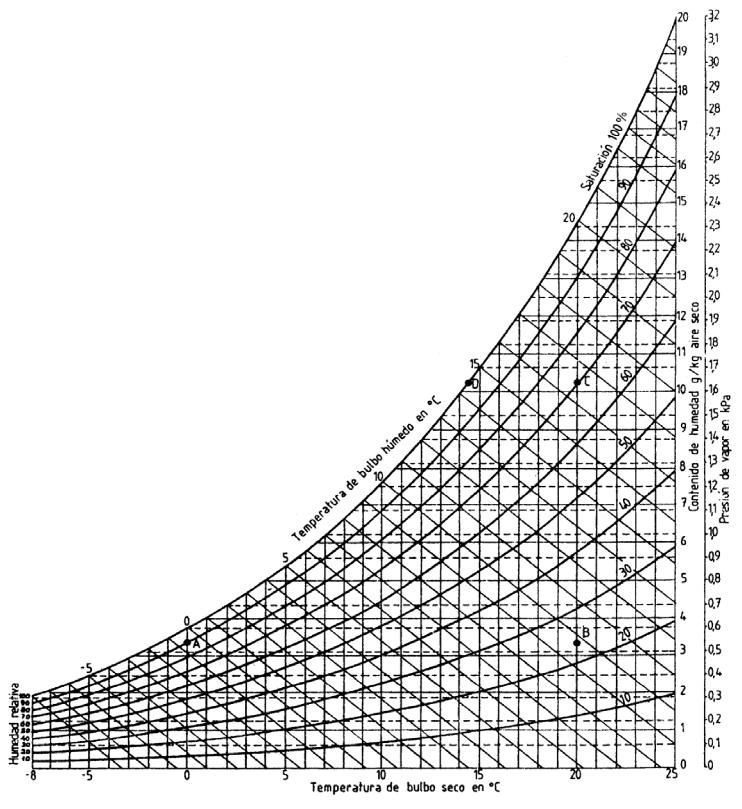


Figura 6 Diagrama psicrométrico

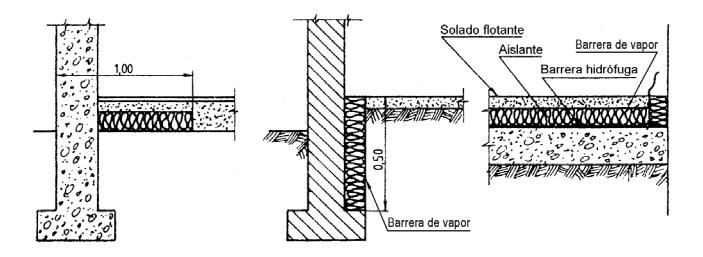


Figura 7 Aislamiento térmico de pisos sobre terreno natural

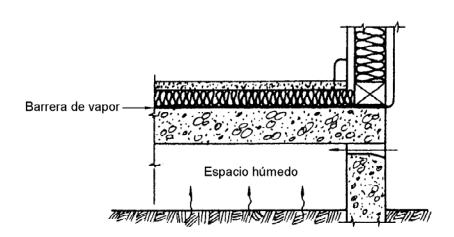


Figura 8
Aislamiento térmico de una platea de hormigón sobre cámara de aire ventilada

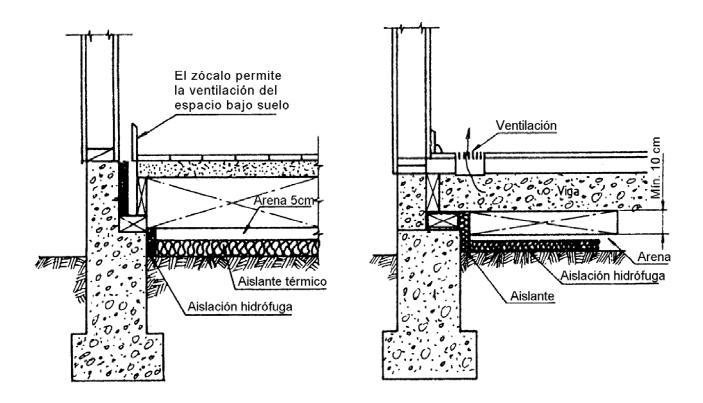


Figura 9 Aislamiento térmico de pisos de madera separados del terreno

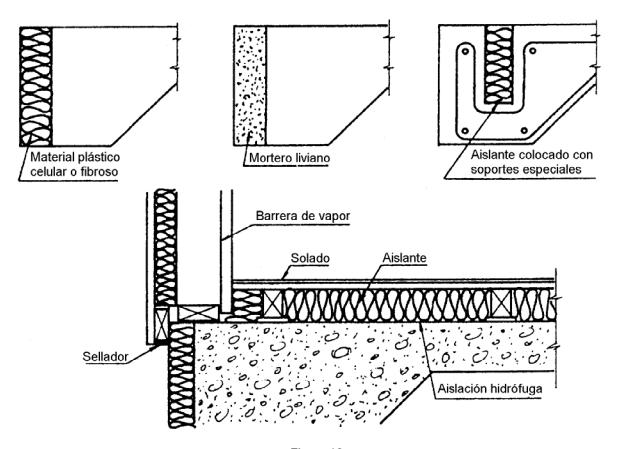


Figura 10 Aislamiento térmico de vigas de fundación

Anexo B

(Informativo)

Bibliografía

En la revisión de esta norma se ha tenido en cuenta el antecedente siguiente:

IRAM - INSTITUTO ARGENTINO DE NORMALIZACIÓN

IRAM 11625:1991 - Acondicionamiento térmico de edificios. Verificación del riesgo de condensación de vapor de agua, superficial e intersticial, en muros, techos y otros elementos exteriores de edificios.

Anexo C

(Informativo)

La revisión de esta norma ha estado a cargo de los organismos respectivos, integrados de la forma siguiente:

IRAM

IRAM

Subcomité de Aislamiento térmico de edificios:

Integrantes Representa a:

Arq. Pablo AZQUETA A.A.P.E. Ing. Paul U. BITTNER HUNTSMAN ICI ARGENTINA S.R.L. Arq. Jorge CZAJKOWSKI **IDEHAB-FAU-UNLP** Arq. Jorge DIAZ S.V.O.A. Ing. Alberto ENGLEBERT ISOTEX S.A. Arg. John Martin EVANS FADU-U.B.A. Sr. R. LAMBERTS U.F.S.C. Ing. Horacio MAC DONELL ESTUDIO De Ing. MAC DONELL Ing. H. Patricio MAC DONNELL (h) FACULTAD DE INGENIERÍA-U.B.A. Ing. Darío MISLEJ **INROTS SUDAMERICANA** Ing. Enrique RICUCCI BARRIONUEVO CAI Arq. Silvia VILLAR ETERNIT Arg. Ing. Vicente VOLANTINO INTI Arq. Pablo BAZAGA **IRAM** Ing. Sergio LOZANO

Comité General de Normas (C.G.N.)

Srta. Cecilia ESPINOSA

Integrante Integrante

Dr.	Víctor ALDERUCCIO	Ing.	Jorge KOSTIC
Ing.	Eduardo ASTA	Ing.	Jorge MANGOSIO
Lic.	José CARACUEL	Ing.	Samuel MARDYKS
Dr.	Álvaro CRUZ	Ing.	Tulio PALACIOS
Dra.	Irene DASSO	Sr.	Francisco R. SOLDI
Ing.	Diego DONEGANI	Ing.	Raúl DELLA PORTA
Ing.	Ramiro FERNÁNDEZ		

ICS 91.120.10 * CNA 5640

^{*} Corresponde a la Clasificación Nacional de Abastecimiento asignada por el Servicio Nacional de Catalogación del Ministerio de Defensa.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.